A projectile is fixed across level ground with an initial speed of V at an initial angle of O. where does it land? (In other words, what is the range of the projectile?

our answer can only have the letters given in the problem - so "V" and "O" are the only allowed variables. Since "g" is a constant, that is also allowed in our answer.

when doing projectile motion, we need the components of the initial velocity - so do that first:

$$V_{\chi} = V \cos \theta$$

 V_{y_1}
 V_{y_1}
 $V_{y_2} = V \sin \theta$

All projectile motion is based on the following basic equations:

$$X = V_X t$$
 $y = -\frac{1}{2}gt^2 + V_{g_1}t + y_1$ $V_y = -gt + v_2$

So for this problem we have

$$X = V\cos\theta t$$

$$y = -\frac{1}{2}gt^{2} + V\sin\theta t \quad (y_{i} = 0)$$

$$Vy = -gt + U\sin\theta$$

Now let's actually try
$$\frac{1}{2}$$
 solve.
 $X = v\cos \theta t \implies R = v\cos \theta t \qquad \text{where } T^* \text{ means}$
the total time in
the air
Notice $v^* \notin "\theta"$ are allowed in our answer, but
not the "T". That means we need to find the total
time in the air. Easy! There are 3 ways:
Option 11 $y=0$ when it lands, so
 $y = -\frac{1}{2}gt^2 + v\sin \theta t \Rightarrow 0 = -\frac{1}{2}gT^2 + v\sin \theta T$
 $f = \frac{2v\sin \theta}{3}$
Option 21 $V_g = -V_g;$ when it lands, so
 $V_g = -gt + v\sin \theta \Rightarrow -v\sin \theta = -gT + v\sin \theta$
 $T = \frac{2v\sin \theta}{3}$
Option 31 $V_g = 0$ @ Maximum Height, which happens
at time T_g in this ase.
 $V_g = -gt + v\sin \theta \Rightarrow 0 = -g(\frac{1}{2}) + v\sin \theta$
 $T = \frac{2v\sin \theta}{3}$

Almost Done!

So we have $R = (v \cos \theta)T = \frac{1}{2} \frac{2 \sin \theta}{g}$ So $R = \frac{v^2 2 \sin \theta \cos \theta}{g}$ is $\sin 2\theta = 2 \sin \theta \cos \theta$ So $R = \frac{v^2 \sin 2\theta}{g}$

Done! But This equation is ONLY true when projectile is fired across level ground from the ground. It does not work if the initial & final heights are different! ALSD remember that it is based off the initial velocity! So for a projectile fired across level ground $Cy_i = y_f = 0$) what initial angle would maximize the range?

$$R = \frac{v^2 \sin 2\theta}{9}$$
The part that depends on θ is
"sin 2 θ ". The maximum value
that can be is 1, ro
 $1 = \sin 2\theta$
 $50 \quad 2\theta = 90^{\circ}$
 $\theta = 45^{\circ}$

If you want to be fancier, find & to maximize R:

$$\frac{dR}{d\theta} = \frac{d}{d\theta} \left(\frac{v^2 \sin 2\theta}{g} \right) = \frac{v^2}{g} \left(-\cos 2\theta \right) (2)$$

$$\frac{dR}{d\theta} = -\frac{2v^2}{g} \cos(2\theta)$$

set derivative to 0 to find max & mins:

$$O = -\frac{2v^2}{g}\cos(2\theta)$$
$$\cos(2\theta) = O$$
$$2\theta = 90^\circ$$

(First way is much easier)

What is the relationship between 2 angles that have the same range? Look at the equation we got along the derivation $R = V^{2} 2 \sin \theta \cos \theta$ So if $R_1 = R_2$ $\frac{\sqrt{2}}{q} 2 \sin \theta_1 \cos \theta_1 = \frac{\sqrt{2}}{q} 2 \sin \theta_2 \cos \theta_2$ $\sin\theta_1\cos\theta_1 = \sin\theta_2\cos\theta_2$ (tey! Remember that (for $o \leq \Theta \leq 90^\circ$) $Sin(\Theta) = cos(90 - \Theta)$ and $\cos(\theta) = \sin(90-\theta)$ So if $\Theta_2 = 90 - \Theta_1$, then sin 02 WSO2 = $\sin(90-\theta_1)\cos(90-\theta_1)$ $= \cos \Theta_1 \quad \sin \Theta_1$ s_{1} sind, $cos \theta_{1} = cos \theta_{1} sin \theta_{2}$ so θ , ξ , θ , are complementary

(2)

or you could be more formal: $R_1 = R_2$ $\frac{V^2}{g} \sin(2\theta_1) = \frac{V^2}{g} \sin(2\theta_2)$ $\sin(2\theta_1) = \sin(2\theta_2)$ On the unit circle, if $\sin \alpha = \sin \beta$ then $\beta = 180 - \lambda$

 $\theta_1 = (80 - 2\theta_2)$ $\theta_1 = 90 - \theta_2$ $\theta_1 + \theta_2 = 90^{\circ}$

